You are given a sequence of n integers a1, a2, ..., an.
Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible.
The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence.
The poorness of a segment is defined as the absolute value of sum of the elements of segment.
Input
The first line contains one integer n (1 ≤ n ≤ 200 000), the length of a sequence.
The second line contains n integers a1, a2, ..., an (|ai| ≤ 10 000).
Output
Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6.
Example
3 1 2 3
1.000000000000000
4 1 2 3 4
2.000000000000000
10 1 10 2 9 3 8 4 7 5 6
4.500000000000000
Note
For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case.
For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
The poorness:连续子序列的和的绝对值。
题解:ternary searc(三分查找),很典型的三分题。x取极值时最小,否则都会增大,所以是一个凹函数。
1 #include2 using namespace std; 3 4 const int maxn=2e5+5; 5 6 int n; 7 int a[maxn]; 8 9 double maxSum(double A[]){10 double ans=0,tem=0;11 for(int i=1;i<=n;i++){12 tem+=A[i];13 if(tem<0) tem=0;14 ans=max(ans,tem);15 }16 return ans;17 }18 19 double compute(double x){20 double b[maxn];21 for(int i=1;i<=n;i++) b[i]=a[i]-x;22 double ans1=maxSum(b);23 for(int i=1;i<=n;i++) b[i]=-b[i];24 double ans2=maxSum(b);25 return max(ans1,ans2);26 }27 28 int main()29 { scanf("%d",&n);30 for(int i=1;i<=n;i++) scanf("%d",&a[i]);31 double l=-1e4,r=1e4;32 for(int i=1;i<=100;i++){33 double midl=(2*l+r)/3.0;34 double midr=(2*r+l)/3.0;35 if(compute(midl)